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SUPPORTIVE INFORMATION  for Bruce N. Ames Perspective 
 
SI-1-Vitamin and Mineral Deficiencies 
 Numerous studies link poor nutrition to a variety of diseases of aging, as shown in 
the following sampling of recent references (1-12). 
 
SI-2-Triage Theory 
 Vitamin K (phylloquinone) is necessary for the function of 16 enzymes. A triage 
rationing process is supported by an analysis of the behavior of these enzymes under a 
mimic of vitamin K shortage (13). Recent studies provide additional support: a 
Mendelian Randomization (MR) epidemiology study showed that both all-cause and 
cardiovascular disease (CVD) mortality are caused by vitamin K1 inadequacy, and 
confirmed that the low level of the inactive form of Mgp protein, which normally 
prevents arterial calcification, is diagnostic for vitamin K1 deficiency (14). Increased 
dietary intake of vitamin K1 and menaquinone (K2=MK2) and other derivatives (such as 
MK7 in natto) was associated with lower all-cause cancer and CVD mortality (15). A 
study of 166 adolescents supports the CVD findings by showing that subclinical cardiac 
structure and function variables are most favorable at higher phylloquinone (vitamin K1) 
levels (16).  
 Selenium is necessary for the function of 25 enzymes. A triage-related rationing 
was also shown to be operating in the case of selenium (17). A 4-year Randomized 
Clinical Trial (RCT) (18) of selenium supplementation (200 µg/d) +CoQ10 (200mg/d) 
significantly reduced CVD mortality risk by more than 40%, and also significantly 
reduced hypertension, IHD, impaired cardiac function, and diabetes in 443 elderly people 
in rural Sweden (where soil is low in selenium) during a follow-up time of 12 years; 
improvement in CVD biomarkers, such as echocardiography and natriuretic peptide 
levels, was also observed. 
 
SI-3-Survival V/M that are also Longevity V/M 
 Vitamin D: A meta-analysis of vitamin D versus mortality in 5 Northern European 
countries (n=~29,000), using subjects of median age 62 years, showed that a blood level 
of 25(OH)D of less than 12 ng/ml was associated with maximum mortality, while levels 
between 30 to 40 ng/ml were associated with the lowest mortality (19). Rodent evidence 
also showed that mutations in the vitamin D receptor in mice resulted in premature aging 
(20). A meta-analysis of 32 studies (n = ~500,000) on vitamin D and all-cause mortality 
showed that the mortality hazard ratio between subjects with the lowest quantile (<9 
ng/ml) and those with the highest (>50 ng/ml) serum levels of 25(OH)D was 1.9 
(p=0.001). Levels of 25(OH)D less than or equal to 30 ng/ml were associated with 
significantly higher (p < .01) all-cause mortality than levels greater than 30 ng/ml (21). A 
12-year German study of elderly individuals (n=9,579) in a statistically simulated 
intervention with vitamin D showed a large decrease in all-cause mortality and cancer 
(22). 
 A 29 year-long study of 95,000 Danes showed that a decreased plasma level of 
25(OH)D was associated with early mortality and an increased risk of ischemic heart 
disease and myocardial infarction (23). An MR analysis of this study showed that a low 
25(OH)D level was causally associated with all-cause mortality and cancer mortality 
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(although not with cardiovascular mortality) (24). The latter lack of effect of vitamin D 
on CVD was replicated in a Canadian MR study of 34,000 people of European descent 
(25). However, a recent study found that supplementation with high doses of vitamin D 
for a year significantly reduced blood pressure (26). A RCT on vitamin D3 
supplementation on 70 young overweight African-Americans with vitamin D deficiency 
showed amelioration in arterial stiffness (27). 
 Deficiency of vitamin D is associated with increased risk of cancer incidence and 
risk of mortality, as reviewed recently (28). An estimate has been made that doubling the 
mean concentration of 25(OH)D in the population would reduce the mortality rate by 
about 20% and increase life expectancy by two years (29). Meta-analyses of the 
numerous vitamin D mortality studies showed a consistent correlation between increasing 
vitamin D levels and a decrease in cancer, CVD, and all-cause mortality (30). Another 
Mendelian Randomization study performed on 31,719 European women indicated that 
vitamin D deficiency is causally related to ovarian cancer (31). 

The rate of decay of brain function in humans is faster in individuals with lower 
vitamin D levels (32). Executive function improvement, as measured by visual memory, 
was more effective with supplementation of 4,000 IU/day of vitamin D as compared to 
400 IU/day (33). An inverse relationship was observed between maternal and umbilical 
cord blood concentrations of 25(OH)D and serotonin concentrations, leading to the 
proposal that vitamin D deficiency contributes to longer-term neurocognitive impairment 
in infants and children (34). Both of these studies are in agreement with the finding that 
vitamin D activates the gene for synthesizing brain serotonin which controls executive 
function (35). The importance of serotonin in brain executive function was also shown in 
a study that linked low serotonin levels to mild cognitive impairment in the brain (36).  

Diabetes may also be affected by the level of vitamin D: a meta-analysis using 24 
RCTs with 4,000 IU per day of vitamin D3 in 1,528 type-2 diabetics showed that vitamin 
D significantly reduced fasting plasma glucose, HOMA-IR, and hemoglobin A1C (37).  

Magnesium: A prospective study of ~7,000 Mediterranean adults with high CVD 
risk and eating diets containing varying magnesium content showed that Mg intake is 
inversely associated with all-cause mortality; these results are consistent with previous 
studies, as reviewed (38). Adequate magnesium was shown to protect against colorectal 
adenoma in a study investigating the effect of the magnesium /calcium ratio (39); this 
study included an analysis of a polymorphism in a magnesium transporter which also 
implicated magnesium deficiency in raising colorectal cancer risk. A review of the effects 
of magnesium deficiency showed increased DNA damage, telomere shortening, increased 
ceramide level, and an association with aging, heart disease, and colorectal cancer risk 
(40). There is also a significant inverse association between magnesium intake (as well as 
potassium intake) and risk of stroke (41, 42). Magnesium is required by almost all of the 
~50 DNA repair enzymes: low dietary magnesium intake was shown to be associated 
with poorer DNA repair capacity and increased risk of lung cancer (43). Various reviews 
on how to best assay for magnesium deficiency and to determine the optimum 
magnesium intake are available (44). 
 
SI-4-Conditional Vitamins 

Taurine: A large rodent literature on taurine is consistent with the many human 
studies. The essentiality of taurine was demonstrated in cats (which have unusually low 
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ability to synthesize taurine) (45) and mice for the embryonic/fetal development of the 
brain and CNS, eyes, skeletal system, muscles, and many other tissues/organs (46, 47). 
Taurine is present in high concentrations in rat heart. In several rat and mouse models of 
heart disease taurine decreases hypertension, impairment of intimal thickening, 
arteriosclerosis, vascular reactivity, oxidative stress, and inflammation (reviewed in (48)). 
It regulates the mitochondrial respiratory chain in rat heart: its deficiency impairs cardiac 
mitochondrial respiratory function and causes cardiac myopathy (49). In rodent models 
for stroke and abdominal aortic aneurism formation taurine was shown to have protective 
effects (50, 51). 

The importance of taurine in brain function was shown in rats, where it is present 
at high concentrations (52). It displayed a dose-dependent protection in a rat model of 
brain injury (53) and protected against traumatic brain injury by increasing mitochondrial 
function and cerebral blood flow in rats (54).  

Taurine’s function as an osmolyte was shown by studying the effect of its 
depletion in a wide variety of species and on several organs.  It participates in controlling 
cell volume in a variety of cells (55, 56); it modulates calcium flux, thus affecting the 
contractile response in heart and muscle, insulin levels, blood pressure, and membrane 
polarization (55); it is the most osmotically active molecule in the brain (57). Its 
supplementation helps reduce the risk of diseases involving defective protein-folding by 
acting as a stabilizing chaperone for the proper folding of proteins as they come off the 
endoplasmic reticulum (58-61).  

Numerous studies in experimental animals have shown the importance of the 
ability to transport taurine, with damaging effects in several tissues if the transport system 
is defective: mouse brain, liver, eyes, skeletal muscles, immune cells, olfactory system, 
auditory system, and heart (62-68). Skeletal muscle aging is accelerated in taurine 
transporter knock-out mice (69).  
 
SI-5-Putative Longevity Vitamins  

a. Ergothioneine (ESH): One major function of ESH may be to reduce the level of the 
toxic oxidized ferryl form of heme proteins in vivo, such as myoglobin, not designed to function 
as heme peroxidases (70, 71). One of the problems in Alzheimer’s disease appears to be that the 
amyloid-β peptide in the brain binds heme very tightly, which leads to a temporary shortage of 
heme; this causes complex IV in mitochondria to release hydrogen peroxide, which then converts 
the amyloid-β heme into a toxic ferryl heme peroxidase that damages the cell (72). ESH has been 
shown to be an effective inhibitor of myeloperoxidases and is more effective than glutathione 
and ascorbic acid (73). In vitro, ESH inhibits the amyloid-β heme peroxidase more effectively 
than any other antioxidant examined. Perhaps relevant to the primary role of ESH in reducing the 
level of ferryl heme is the presence of the ESH transporter gene within a cluster of genes 
involved in mitochondrial heme biosynthesis (74).  

ESH effectively protects against copper-dependent oxidative damage to DNA and 
protein by forming a redox-inactive complex with Cu(I); redox-inactive copper may play 
a detrimental role in Alzheimer’s disease (75). 

b. Pyrroloquinoline quinone: Experiments in PQQ-deficient rats and mice lend 
additional support to the concept that PQQ is a longevity vitamin (76-81). PQQ 
influences the expression of many rat genes, including genes involved in metabolic stress, 
cell signaling, immune function, cellular transport, cellular growth, cell cycling, 
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extracellular matrix formation, mitochondrial functions, lipid-related and phospholipid-
related functions (82). PQQ also modulates mitochondrial quantity and function (in mice) 
(83), and mitochondrial lipid and energy metabolism (in rats) (79). With respect to 
mitochondrial function, a study found that when PQQ was incorporated into mouse 
hepatocytes, it stimulated mitochondrial biogenesis via induced PGC-1α activation (84). 
Mice deprived of PQQ became osteolathyritic, which was reversed by the addition of 
PQQ to the diet. In vivo, PQQ improved glucose tolerance in type-2 diabetic mice (85). In 
surgically injured young rats, PQQ had an analgesic effect on neuropathic pain (86). PQQ 
enhanced cognitive function in rats and prevented cognitive deficit under oxidative stress 
(87, 88).  

c. Queuine: Results from mice suggest that the intestinal-flora is capable of 
supplying queuine in sufficient quantities to metazoans. Animals fed a chemically 
defined diet that is devoid of queuine showed no change in the relative amounts of 
queuine-modified and unmodified tRNA (Farkas 1980). By contrast, mice maintained on 
a chemically-defined diet under germ-free conditions became fully depleted of queuine in 
all four tRNAs after one year (89). Feeding these animals purified E. coli tRNA showed 
that higher mammals can independently metabolise and recover queuine from tRNA (89). 
 The queuine modifications in aspartyl and tyrosyl tRNAs are then further 
modified with a mannose and a galactose, respectively (90), via a glycosyl linkage, 
whereas histidinyl and asparaginyl tRNA remain non-glycosylated (90). Notably, both 
cytosolic and mitochondrial tRNA are substrates for queuine-tRNA insertion (91, 92). 
Recently, a protein termed DUF2419 has been identified as a queuosine salvage enzyme 
in yeast which is conserved across diverse species (93). At the molecular level, queuine’s 
position in the tRNA anticodon loop has been shown to influence the amino acid 
charging of the tRNA molecule (94) codon recognition on the ribosome (95) and the rate 
and accuracy of translation (96).  

d. Carotenoids: Carotenoids are introduced into humans by way of their diet, 
where they perform the same antioxidant function of quenching singlet oxygen, which is 
generated either photochemically (in the human eye, for example, (97), or in dark 
reactions by the immune system in neutrophils (98-100), and in eosinophils (101). 

Six carotenoids are present in the American diet accounting for 95% of the 
carotenoids found in human blood: lutein + zeaxanthin, α and β-carotene, lycopene, and 
β-cryptoxanthin (102). They are also found in the human brain (103, 104).  

In support of the concept of carotenoids being longevity vitamins are several 
findings that they are involved in increasing long-term health. In a study of serum 
carotenoids in 13,000 Americans in the NHANES survey, an increase in all-cause 
mortality was associated with a low level of total carotenoids (α- and β-carotene, lutein 
and zeaxanthin, β-cryptoxanthin, and lycopene), or low lycopene alone (105). The more 
polar carotenoids (xanthophylls) and non-polar ones (such as lycopene) may display 
synergy (106-109). In addition, xanthophylls can rigidify membranes, thus protecting 
them by increasing the barrier to oxidation (108).  

i). Lutein and Zeaxanthin are part of the antioxidant photosynthetic system of all 
higher plants. They are present in most common vegetables and fruits, in particularly 
high levels in kale, spinach, broccoli, and corn (110). Diet-derived lutein and zeaxanthin 
are found in the macula of the human eye and in lower concentrations in many other 
human tissues, particularly in the brain (111, 112). The macula also contains meso-
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zeaxanthin, which is made in the eye from lutein (113) and will not be discussed here; see 
also (114). The key role of lutein and zeaxanthin in vision has been well reviewed 
recently (110, 114, 115). 

Lutein and zeaxanthin help protect the retinal macula, which contains the 
photoreceptors that are critical for central vision (110, 111). They are taken up in high 
concentrations by the retina (116) and are bound by lutein- and zeaxanthin-binding 
proteins, thus forming the macular pigment (117-119). 

Oral supplementation with lutein or zeaxanthin in humans or monkeys leads to a 
significantly increased macular pigment density (112, 120-123) and results in better eye 
function and protection. Lutein and zeaxanthin are believed to perform three main 
functions in eyes (which are the same they perform in plants) (111): 1) they filter out 
harmful wavelengths of strong blue light from the sky; 2) they have anti-singlet oxygen 
activity, and 3) they are inserted into membranes, preventing oxidation of omega-3 fatty 
acids, the most easily oxidized fatty acids (114, 124). 

Long-term benefits derived from lutein and zeaxanthin include reducing the risk 
of age-related macular degeneration (AMD; the main cause of blindness in the elderly). 
Supplementation with lutein or zeaxanthin or both led to improved visual performance in 
patients with early AMD, including high contrast and low-contrast visual acuity, shape 
discrimination, glare recovery, and contrast sensitivity functions (125-127). A clinical 
trial in 112 patients with early AMD using various supplementation doses of lutein or 
lutein/zeaxanthin for 2 years resulted in increased macular pigment optical density and 
enhanced retinal sensitivity (128). The AREDS2 study (129) supports such conclusion, as 
shown by a secondary analysis of participants in the lowest quintile of dietary intake of 
lutein/zeaxanthin, which indicated a protective effect against progression to advanced 
AMD with a risk reduction of 26%, although this study is very complicated. 

Some protection from cataract formation is obtained with an intake of a basal 
level of lutein and zeaxanthin (130) and protection is evident in other parts of the eye 
including the retinal pigment epithelium (131) and as also assessed by various parameters 
(116, 132, 133). 

Lutein, the main carotenoid in the brain, appears to play a role in delaying brain 
aging (110, 134-137). For example, lutein levels in plasma and brain are associated with 
a higher volume of brain grey matter and with improved crystallized intelligence in the 
elderly (138). A double-blinded, randomized controlled trial showed that a lutein plus 
zeaxanthin supplement increased both neural processing speed and efficiency (139). 
Decreased processing speed is a major hallmark of cognitive decline. Lutein and 
zeaxanthin have also been shown to improve memory recall while using less brain power 
in older individuals (neural efficiency).  

The following carotenoids are also important for human cardiovascular health: the 
polar marine xanthophyll, astaxanthin; the plant xanthophylls, lutein, zeaxanthin and β-
cryptoxanthin; and the non-polar carotenoids lycopene and β-carotene (140). Lutein (but 
not β-carotene) supplementation resulted in a marked lowering of a risk factor for heart 
disease, carotid intima-media thickening (141-145). 

Lutein, zeaxanthin, astaxanthin, and lycopene improve general health and healthy 
aging trough their prevention and treatment of non-alcoholic fatty liver disease (146) and 
diabetic microvascular complications (147). Lutein and zeaxanthin levels are associated 
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with longer telomeres in humans (148) and lutein extends the lifespan of Drosophila and 
protects against oxidative stress (149). 

High intake and high serum levels of dietary lutein lower the risk of various types 
of cancer (150). 

In agreement with the above studies on the importance of lutein for health the 
suggestion was made that “A healthy diet should be considered to do more than prevent 
deficiencies, it must promote optimal health during the life course” (110).  

ii). Lycopene, the precursor of several other carotenoids found in plants, also 
appears to be a longevity vitamin. It is a potent non-polar anti-oxidant, containing 11 
conjugated trans double bonds and is one of the most efficient singlet oxygen quenchers 
known (151, 152). The highest levels of lycopene are found in the tomato (85% of U.S. 
intake) (153, 154). Dietary lycopene reaches many tissues in the human body, 
particularly testes, adrenals, liver, prostate, brain, breast, and colon, in all of which it may 
exert its protective actions (155, 156).  

The beneficial effects of lycopene metabolism on diseases of aging, in particular 
through its antioxidant mechanisms, have been reviewed (157). Epidemiological studies 
show inverse correlations between high levels of dietary or serum lycopene and reduction 
of the risk of various cancers (158-160), such as prostate cancer where an inverse 
correlation between lycopene intake (or lycopene serum levels) and prostate cancer risk, 
and aggressiveness levels was found (although null associations were found in some 
other studies) (161-166). Lycopene also helped to reduce oxidative stress, metabolic 
syndrome, high blood pressure (167), and heart disease (168), and carotid media-
thickness (145); it lowered the risk of myocardial infarction (169) and of metabolic 
syndrome (170); it significantly protected against oxidative stress in DNA (171). 

Possible mechanisms for lycopene action in a wide variety of diseases of aging 
have been suggested (167, 168, 172-176).  

iii). α- and β-Carotene, and β-cryptoxanthin are precursors of vitamin A (104). 
Diets high in α- and β-carotene are associated with lower risk of type-2 diabetes (177). 
Significant protection against breast cancer risk in Chinese women has been shown to be 
associated with consumption of α- and β-carotene, lycopene, lutein/zeaxanthin (but not 
of β-cryptoxanthin). This finding is consistent with previous studies (178). β-
cryptoxanthin has been shown to inhibit lung cancer (179). A significant increase (5-8%) 
in leukocyte telomeres was seen in humans in the highest quartile consuming α- and β-
carotene and β-cryptoxanthin, as compared with the lowest quartile (180). Consumption 
of β-carotene, and β-cryptoxanthin has also been associated with protection against 
hearing loss in a large (12,789 women) prospective study of hearing loss (181). A 
positive effect of β-carotene on cognitive function was observed, but only after prolonged 
treatment (12 years) (182).  

iv). Astaxanthin (ASX) also is a putative longevity vitamin. It is a marine orange-
red carotenoid in the xanthophyll class present in salmon, trout, red snapper, tilapia, crab, 
shrimp and lobster, octopus, and squid, and many other kinds of seafood and freshwater 
fish (183-189). It is synthesized primarily by various kinds of marine microalgae and 
functions to counter oxidative stress (190-193). ASX is a 4, 4’ diketo zeaxanthin (109) 
which contains 13 conjugated double bonds. It is somewhat similar in structure to 
zeaxanthin (109), which contains only 11 conjugated double bonds.  
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ASX is absorbed into the human bloodstream and eye (194-199) with consequent 
improvements in visual acuity and amplitude of accommodation, and thus to healthy 
aging (200, 201). ASX appears to enter cells through non-specific transport systems that 
transport xanthophylls such as zeaxanthin and lutein, since it is similar in structure to 
those compounds; they might spare each other.  

ASX has been shown to be a particularly strong antioxidant in studies on lipid 
peroxidation (109, 202). It prevented lipid peroxidation in membranes and was 
considerably more potent than either lutein or zeaxanthin (109, 203, 204). It quenches 
singlet oxygen (106, 151). It has been suggested that the alternating polar-nonpolar-polar 
structure of ASX, and other oxygen-containing more polar xanthophylls, allows it to span 
cellular and organelle membranes and thus perform better antioxidant functions against 
lipid peroxidation (205). The family of xanthophyll carotenoids rigidify membranes and 
limit O2 penetration (108). ASX has been shown to be an effective antioxidant against 
damage from reactive nitrogen species (in addition to lutein and zeaxanthin), such as 
peroxynitrite derived from nitrogen oxide, (206, 207). It is common only in diets 
containing abundant marine foods, such as in the Japanese diet.  

A comprehensive review of ASX action (204) concluded that it has potential 
health-promoting effects in the prevention and treatment of numerous diseases related to 
aging. A recent review of the literature (208), including 3 positive Japanese RCTs, 
concludes that ASX reduces cognitive and memory dysfunction with age. A review of 
ASX studies in humans (10 trials) and animals (12 studies) with an emphasis on 
cardiovascular health and disease, concluded that ASX reduced thrombosis; myocardial 
infarct size; oxidative damage to DNA, protein, and lipids; and blood pressure (209). See 
also (210). ASX significantly decreased inflammation and DNA oxidation and it 
enhanced the immune response in humans (211). In a study on ulcers in humans infected 
with H. pylori, ASX significantly decreased gastric inflammation (212). In human 
clinical trials supplementation of ASX was shown to lead to significant reductions in 
oxidative stress, hyperlipidemia, and levels of inflammatory markers (213).  
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